Abstract

Zirconium dioxide (ZrO2) possesses numerous advantages such as high mechanical strength, a low friction coefficient, excellent optical properties, and an extended lifespan. Consequently, ZrO2 has a broad research foundation and practical significance in functional films and wear-resistant coatings. However, it suffers from brittleness and low ductility when used as a bio-coating material. In this study, a ZrO2 film was fabricated on Si (100) and titanium alloy substrates using a magnetron sputtering system. Subsequently, Zr and Nb ions were implanted into the film at varying doses, but with consistent energy levels. The analysis focused on the film’s microstructure, mechanical properties, hydrophilicity, and corrosion resistance. The results demonstrate a significant improvement in the hydrophilicity and corrosion resistance of the ZrO2 film following the implantation of Zr and Nb ions. First-principles calculations based on density functional theory (DFT) principles indicated that, with increasing doping concentrations of Zr and Nb in the ZrO2 model, the stability of the model increased gradually, thereby enhancing its corrosion resistance. The developed product has propelled rapid advancements in fields such as biomedical implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.