Abstract

Abstract In twin wire arc spraying process it is possible to use feedstock wires of two different compositions at the same time. As a result of this procedure it can be achieved composite coatings called also as pseudo alloys with modified physical properties. In this study nickel and cobalt based super alloy materials were arc sprayed with pure molybdenum wire to tailor corrosion and wear resistance of the coatings. Coatings for the tests were sprayed using two different twin wire Sulzer Metco arc-spraying units, Smart Arc and OSU 300, operating with suitable spray parameters to produce coatings of good quality. It was already known that these twin wire configurations are producing coatings with differing microstructures. Coating sprayed with the OSU system was clearly finer in structure and one purpose of this study was to measure the effect of the micro structural size on the corrosion and wear properties of the final coatings. Microstructures of the coating materials were studied and analyzed from cross-sectional specimens. Volume fraction of pure molybdenum in the coating matrices was evaluated with simple line method and according to the results volume fraction of pure molybdenum metal is over 50 volume-% in all of these tested composite coatings and higher in materials sprayed with OSU unit. Also the microstructure of the coatings was seen to be finer when OSU was used as was expected. Wear resistance was measured with modified ASTM G65 rubber wheel sand abrasion wear test and corrosion resistance was tested in low pH values and chlorine containing environment according to the ASTM G48 corrosion testing standard. Corrosion testing was carried out at room temperature 22°C and also at higher 50°C temperature. Molybdenum addition is clearly improving the abrasion wear resistance of the tested coating systems. At room temperature also the corrosion resistance is getting better with molybdenum addition but at higher temperature this effect is not so clear.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call