Abstract
Simple SummaryThe serum, fatty acid and transcriptome profiles in the subcutaneous fat of yaks were measured to explore the effect of long-term energy stress (ES) on fat metabolism during the cold season. The study indicated that under long-term ES during the cold season, the amount of fat in yaks was less, and fat mobilization was one of the main ways by which energy was obtained in yaks. Yaks regulated fat metabolism in subcutaneous fat primarily through adenosine 5′-monophosphate-activated protein kinase (AMPK) signaling. Glucose (GLU) intake, fat catabolism, fatty acid synthesis and fatty acid oxidation in the subcutaneous fat of yaks were all inhibited, which resulted in the fat mobilization of yaks slowing as much as possible under long-term ES. In addition, the energy expenditures in fat cells were inhibited by regulating phosphatidylinositol 3’ -kinase (PI3K)-serine/threonine-protein kinase (Akt) andmammalian target of rapamycin (mTOR) signaling, and the limited energy obtained from GLU and fat was consumed by muscle and organs as much as possible. These factors led to an energy balance in yaks under long-term ES. The fat stored in yaks can be expended for as long as possible, and yaks can survive for as long as necessary under long-term ES.Long-term energy stress (ES) during the cold season is a serious problem for the breeding of yaks. In this paper, the response of fat metabolism in yaks to long-term ES during the cold season was studied. Gas chromatography (GC) analysis showed that the percentage of saturated fatty acids (SFAs) in the subcutaneous fat of the yaks in the ES group was 42.7%, which was less than the 56.6% in the CO group (p < 0.01) and the percentage of polyunsaturated unsaturated fatty acids (PUFAs) in the subcutaneous fat of the yaks in the ES group was 38.3%, which was more than the 26.0% in the CO group (p < 0.01). The serum analysis showed that fatty acid oxidation in yaks was increased under long-term ES. In the subcutaneous fat of yaks under long-term ES, the gene expression levels of glycerol-3-phosphate acyltransferase 4 (GPAT4), hormone-sensitive lipase (HSL), patatin-like phospholipase domain-containing protein 2 (PNPLA2), acyl-CoA dehydrogenase (ACAD), acyl-coenzyme A thioesterase 8 (ACOT8), facilitated glucose transporter (GLUT4), 3-oxoacyl-[acyl-carrier-protein] synthase (OXSM), oestradiol 17-beta-dehydrogenase 8 (HSD17B8) and malonate-Co-A ligase ACSF3 (ACSF3) were downregulated (q < 0.05), whereas the gene expression levels of aquaporin-7 (AQP7), long-chain-fatty-acid-CoA ligase (ACSL), elongation of very long chain fatty acids protein (ELOVL) and fatty acid desaturase 1 (FADS1) were upregulated (q < 0.05), indicating the inhibition of fat catabolism, fat anabolism, fatty acid oxidation, glucose (GLU) intake and SFA synthesis and the promotion of glycerinum (GLY) transportation and PUFA synthesis. Additional findings showed that the gene expression levels of leptin (LEP), adenosine 5′-monophosphate-activated protein kinase (AMPK) and phosphatidylinositol 3-kinase (PI3K) were upregulated (q < 0.05), whereas the gene expression levels of malonyl-CoA decarboxylase (MCD), sterol regulatory element-binding protein 1 (SREBF1), mammalian target of rapamycin (mTOR) and serine/threonine-protein kinase (AKT) were downregulated (q < 0.05), indicating that fat metabolism in the subcutaneous fat of yaks under ES was mainly regulated by AMPK signaling and mTOR and PI3K-AKT signaling were also involved. Energy consumption was inhibited in the subcutaneous fat itself. This study can provide a theoretical basis for the healthy breeding and genetic breeding of yaks.
Highlights
Yaks (Bos grunniens) are unique livestock species which are mostly found in the Tibetan Plateau [1], and there are currently approximately 20 million yaks in the world
The total body fat rates (BFRs) of the visceral fat of the yaks in the energy stress (ES) group was 0.69%, which was lower than the 4.17% in the control group (p < 0.01), indicating that the long-term ES had a substantial effect on the BFR of the visceral fat
The activity of mammalian target of rapamycin complex 1 (mTOR) was inhibited in the subcutaneous fat of the yaks under ES, which can inhibit the activity of downstream serine/threonine-protein kinase ULK1 in the subcutaneous fat of the yaks under ES (q < 0.01)
Summary
Yaks (Bos grunniens) are unique livestock species which are mostly found in the Tibetan Plateau [1], and there are currently approximately 20 million yaks in the world. Yaks play important roles in the daily lives of local residents, including supplying animal-derived food, transport, shelter and fuel [2,3]. As a classic grazing livestock, the growth of yaks is directly affected by the natural environment. The growth of animals is affected by the balance between the supply of food and the cost of survival each day [5]. From October to the following April, the grass withers and even dies, and yaks only obtain limited energy from it. During the long period of life and evolution, yaks have formed a strong adaptability to long-term ES during the cold season. When the energy from cured hay cannot meet the needs of yaks, some nutrient substances that were previously stored in yaks are decomposed to supply energy
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have