Abstract

A simple binary matroid is called $I_4$-free if none of its rank-4 flats are independent sets. These objects can be equivalently defined as the sets $E$ of points in $PG(n-1,2)$ for which $|E \cap F|$ is not a basis of $F$ for any four-dimensional flat $F$. We prove a decomposition theorem that exactly determines the structure of all $I_4$-free and triangle-free matroids. In particular, our theorem implies that the $I_4$-free and triangle-free matroids have critical number at most $2$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.