Abstract

Using an embedding atom method, the low-lying candidate structures of a large Pt-Cu alloy cluster Pt86Cu22 were obtained through screening 105 isomers. The results indicate that the Pt@PtCu core-shell structures with Pt skin and PtCu core are energetically more stable than the others, which is in good agreement with the experimental observation. Furthermore, an impurity Cu atom is preferred to stay at the subsurface instead of the surface region of Pt-Cu alloy clusters, and the doped Cu atoms prefer to disperse in Pt-Cu alloy. The electronic structures of the EAM optimized structures are calculated with density functional theory, and the projected electronic densities of states reveal that Cu doping can obviously enrich the electronic states of surface Pt atoms near the Fermi level, which may provide some clues for understanding the mechanism of enhancement of the catalytic activity for Pt-Cu alloy catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.