Abstract

High-pressure and high-temperature experiments using a laser-heated diamond anvil cell (LHDAC) and synchrotron X-ray diffraction have revealed a phase transition in MgAl2O4. CaTi2O4-type MgAl2O4 was found to be stable at pressures between 45 and at least 117 GPa. The transition pressure of CaTi2O4-type phase in MgAl2O4 is much lower than that in the natural N-type mid-oceanic ridge basalt composition. The Birch–Murnaghan equation of state for CaTi2O4-type MgAl2O4 was determined from the experimental unit cell parameters with K 0=219(±6) GPa, K 0′=4(constrained value), and V 0=238.9(±9) A3. The observed compressibility was in agreement with the theoretical compressibility calculated in a previous study. e-MgAl2O4 was observed at pressures between 40 and 45 GPa, which has not been reported in natural rock compositions. The gradient (dP/dT slope) of the transition from the e-type to CaTi2O4-type MgAl2O4 had a positive value. These results should resolve the dispute regarding the stable high-pressure phase of MgAl2O4, which has been reported in earlier studies using both the multi-anvil press and the diamond anvil cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call