Abstract

High-pressure and high-temperature experiments conducted in a laser-heated diamond-anvil cell with a synchrotron X-ray diffraction method have revealed a phase transformation in the aragonite-type SrCO3 at pressures above 10 GPa. The new phase has an orthorhombic symmetry and was confirmed to remain stable to 32 GPa. The Birch-Murnaghan equation of state for new phase was determined from the experimental unit cell parameters, with K0 = 101 (± 16) GPa, K0’ = 4 (constrained value), and V0 = 111.9 (± 2.2). This transformation in SrCO3 is different from that in BaCO3 as reported in previous studies. After decompression at ambient pressure, the high-pressure phase transforms to a metastable structure, which has an orthorhombic symmetry. This result should also resolve a dispute regarding the stable high-pressure phases in BaCO3, which is an analog material of CaCO3 and SrCO3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call