Abstract

The causes of colour in beryl have been a research topic for decades. For some varieties, such as emerald (green, coloured by Cr3+ and/or V3+), the main cause of colour is substitutions by metal atoms within the framework. However, the causes for the yellow and blue colours in heliodor, golden beryl and aquamarine are still debated. It is generally agreed that Fe ions are responsible for the colour, but there are differing conclusions about the valence states of these ions, the occupied positions and the colour-inducing processes involved. The colour of aquamarine is commonly attributed to intervalence charge transfer (IVCT) between Fe3+ and Fe2+. Various combinations of sites have been proposed to host the Fe ions engaging in this IVCT. Here we present a new approach to address the topic of colour generation: atomic resolution scanning transmission electron microscopy (STEM). For the first time, atomic resolution images of a beryl (natural aquamarine) are presented in the three crystallographic directions [0001], [1-210] and [1-100]. Ions are clearly resolved in the channels. From the ratio of channel occupation and the correlation of the atoms per formula unit (apfu) calculations we conclude that Fe resides in the framework, not in the channels. The projections in the [1-210] direction directly show that the cavity channel site 2a is occupied, most likely by Cs, in agreement with recent results in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.