Abstract

The carmine spider mite (CSM), Tetranychus cinnabarinus, is the most harmful mite pest of various crops and vegetable plants. Pyrethroid insecticide fenpropathrin has been used to control insects and mites worldwide, but CSM has developed resistance to this compound. Three synergists together eliminated about 50% resistance against fenpropathrin in the CSM. A point mutation was identified from the sodium channel gene of fenpropathrin-resistant CSM (FeR) by comparing cDNA sequences between FeR and susceptible (S) sodium channel genes, which caused a phenylalanine (F) to isoleucine (I) change at amino acid 1538 position in IIIS6 of the sodium channel and has been proven to confer strong resistance to pyrethroid in other species. The mRNA expression of the sodium channel gene in the FeR and abamectin-resistant strain (AbR), which was included as a control, were both relatively lower than in the S. These results demonstrate that a mutation (F1538I) is present in the sodium channel gene in FeR of CSM, likely playing an important role in fenpropathrin resistance in T. cinnabarinus, but that decrease in the abundance of sodium channel did not confer this resistance. The F1538I mutation could be used as a molecular marker for detecting kdr resistance in Arachnida populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call