Abstract

The carmine spider mite (Tetranychus cinnabarinus) is one of the most serious pests on crops and its control mainly depends on chemical acaricides. The excessive and improper acaricides use has resulted in mite resistance to many acaricides, including fenpropathrin. Previous studies have indicated fenpropathrin resistance is a complex development process involving many genes, but information on resistance mechanism of post-transcription regulation is rare. Using Illumina sequencing, several categories of sRNAs were identified from susceptible (TS) and fenpropathrin-resistant strains (TR) of T. cinnabarinus, including 75 known microRNAs (miRNAs) and 64 novel miRNAs, whose target genes containing 78592 miRNA-target pairs were predicted by 6 algorithms. Also, 12 significantly differently expressed miRNAs were identified between the TS and TR libraries and RT-qPCR validation also performed a well consistency with sequencing. The targets of significantly differentially expressed miRNAs included 7 glutathione S-transferase, 7 cytochrome P450 and 16 carboxyl/choline esterase genes, their function in fenpropathrin resistance were further analyzed. The present study provides the firstly large-scale characterization of miRNAs in T. cinnabarinus and the comparison between TS and TR strains gives a clue on how miRNA involves in fenpropathrin resistance.

Highlights

  • Not very long ago, the non-coding regions in the genomes of living organisms were considered to be junk DNA

  • The amount of the common Small RNAs (sRNAs) sequences between TS and TR libraries accounted for 73.07% in total sRNAs from the two libraries, while the amount of specific sRNAs sequences in TS and TR library accounted for 17.11% and 9.81%, respectively

  • We used Illumina sequencing to identify the miRNAs in T. cinnabarinus, 75 known miRNAs were detected in the T. cinnabarinus, which could be aligned to 28 miRNA families, while in T. urticae, the miRNAs of the four developing stages were classified into 43 miRNA families [12]

Read more

Summary

Introduction

The non-coding regions in the genomes of living organisms were considered to be junk DNA. In the last two decades, advances in molecular biology indicated that these regions of genomes can express non-coding RNAs (NcRNAs) which play significant roles in various aspects of cell and organismal biology [1]. Small RNAs (sRNAs) are less than 200 nucleotides (nt) long non-coding RNA molecules and classified into microRNAs (miRNAs), PLOS ONE | DOI:10.1371/journal.pone.0152924. Analysis of microRNA in Mite against Fenpropathrin. Fundamental Research Funds for the Central Universities (XDJK2016A005) Small RNAs (sRNAs) are less than 200 nucleotides (nt) long non-coding RNA molecules and classified into microRNAs (miRNAs), PLOS ONE | DOI:10.1371/journal.pone.0152924 April 6, 2016

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call