Abstract

The effect of counterions' size and affinity on the microphase separated morphologies of neutral-charged diblock copolymers is investigated systematically using a random phase approximation (RPA) and self-consistent field theory (SCFT). The phase diagrams as a function of χAB and fA at different counterion sizes and different affinities to neutral blocks are constructed, respectively. Stability limits calculated using the RPA are in good agreement with the disorder-body-centered cubic phase boundaries from SCFT calculations. It was found that increasing the size of counterions causes the phase diagram to shift upward and leftward, which is attributed to electrostatic interactions and the intrinsic volume of counterions. The domain size of the ordered phase shows an unexpected tendency that it decreases with increasing counterions' size. The counterions' distributions in H and G phases demonstrate that it is electrostatic interaction, instead of packing frustration, that plays a leading role in such systems. For finite size counterions, with the increase in affinity between counterions and neutral blocks, the phase diagram shifts upward, indicating the improved compatibility between different blocks. Furthermore, the affinity effect between counterions and neutral blocks can be mapped into an effective Flory parameter χAB ' = χAB + 0.27χBC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.