Abstract

The problem of a rigorous theory of singularities in space-times with torsion is addressed. We defined geodesics as curves whose tangent vector moves by parallel transport. This is different from what other authors have done, because their definition of geodesics only involves the Christoffel connection, though studying theories with torsion. We propose a preliminary definition of singularities which is based on timelike or null geodesic incompleteness, even though for theories with torsion the paths of particles are not geodesics. The study of the geodesic equation for cosmological models with torsion shows that the definition has a physical relevance. It can also be motivated, as done in the literature, remarking that the causal structure of a space-time with torsion does not get changed with respect to general relativity. We then prove how to extend Hawking’s singularity theorem without causality assumptions to the space-time of the ECSK theory. This is achieved studying the generalized Raychauduri equation in the ECSK theory, the conditions for the existence of conjugate points and properties of maximal timelike geodesics. Hawking’s theorem can be generalized, provided the torsion tensor obeys some conditions. Thus our result can also be interpreted as a no-singularity theorem if these additional conditions are not satisfied. In other words, it turns out that the occurrence of singularities in closed cosmological models based on the ECSK theory is less generic than in general relativity. Our work is to be compared with previous papers in the literature. There are some relevant differences, because we rely on a different definition of geodesics, we keep the field equations of the ECSK theory in their original form rather than casting them in a form similar to general relativity with a modified energy momentum tensor, and we emphasize the role played by the full extrinsic curvature tensor, which now contains torsion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.