Abstract

Precision investment casting process planning has been tackled in the past according to experience. Recently, casting simulation software is being increasingly used to predict product quality by implementing ‘what-if’ scenarios. Input parameters include relatively simple factors such as mould temperature, melting temperature, casting material. They also include factors whose influence is more complex to quantify, such number and location of feeding points, diameter and length of inflow channels, angle of channel with respect to the main sprue axis. Simulation results cannot help the engineer for workpieces other than the one simulated. In this paper a series of feedforward artificial neural network (ANN) models is presented aiming at such generalisation. To achieve this, a large number of software simulation runs were conducted for a number of different small parts, with varying runner geometry and casting conditions. The parameters characterising part geometry have been chosen to be surface area and volume-to-area ratio. The different ANN models predictive capabilities are reflected to the respective training and generalisation errors. A user-friendly interface has been conducted for model execution in a complete application, whose main virtue is expandability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.