Abstract

The determination of storage time in seafood could be performed by microbiological, chemical and sensory analysis. Among these mentioned methods color changes are one part of sensory analysis and are prior acceptance criteria from the point of consumers' view. In this study, a feedforward artificial neural network (ANN) model was developed to predict the storage time of seafood based on L*, a* and b* values. A total of 205 data set were compiled from the literature that represents the color changes of different seafood products to train and test the ANN model. Another set of data (n = 45) were used for the validation of developed ANN model. A multi-layer perceptron (MLP) was applied for the determination of agreements between input and output data. The most accurate topology were determined in accordance with the changes in the values of correlation coefficients (R2) and mean square errors (MSE) and found to be 30 neurons in the layer (R2 = 0.81 and MSE = 0.2). The performance of ANN model was evaluated based on 6 criteria such as Mean Absolute Deviation (MAD), Mean Square Errors (MSE), Residual Mean Square Errors (RMSE), Correlation Coefficient (R2), Mean Absolute Error (MAE) and F-test statistics and found to be 0.2, 0.05, 0.002, 0.8, 0.71 and 1.06, respectively. Moreover, predicted and observed storage time values were fitted and regression coefficient was found to be 0.85. In accordance with the results of this study, the proposed ANN model is accurate, reliable, and proper for the estimation of storage time in seafood products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.