Abstract

Abstract In this study, an artificial neural network (ANN) model was designed to predict color change based on visual assessment of coated cross laminated timber (CLT) exposed outdoors. Coatings and stains were investigated based on ASTM protocols to assess wood surface visual rating, against checking, flaking, erosion, and mildew growth in the State of Mississippi (USA) during one year (2019–2020). It was hypothesized that accurate ratings would promote precise color prediction by the ANN model. Visual assessment inputs were used to develop the model for predicting total color change (ΔE). The training and validation splits of the network were based on a 10-fold cross-validation technique, and the ANN model performance was assessed on the validation set using mean squared error (MSE), mean average precision (MAE), and coefficient of determination (R 2) after permutation feature importance analysis (PFI). Results indicated that coating was the most important feature in color change model. Erosion, checking and flaking achieved similar importance with an approximate difference of 6%. The ANN model was able to effectively predict color change values based on visual ratings with overall accuracy of 95% on truly unseen data. These findings revealed that coating properties, visual appearance, time of exposure, are associated with discoloration. Accurate visual assessment and a well-trained ANN can successfully provide the desired values of ΔE with a smaller number of complex test procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call