Abstract

A standard route for fabrication of nanoscopic tunnel junctions is via electromigration of lithographically prepared gold nanowires. In the lithography process, a thin adhesion layer, typically titanium, is used to promote the adhesion of the gold nanowires to the substrate. Here, we demonstrate that such an adhesion layer plays a vital role in the electrical transport behavior of electromigrated tunnel junctions. We show that junctions fabricated from gold deposited on top of a titanium adhesion layer are electrically stable at ambient conditions, in contrast to gold junctions without a titanium adhesion layer. We furthermore find that electromigrated junctions fabricated from pure titanium are electrically exceptionally stable. Based on our transport data, we provide evidence that the barrier in gold-on-titanium tunnel devices is formed by the native oxide of titanium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.