Abstract

Foaming in aerated bioreactors at wastewater treatment plants (WWTPs) has been identified as an operational issue for decades. However, the affinity of per- and polyfluoroalkyl substances (PFAS) for air-liquid interfaces suggests that foam harvesting has the potential to become a sustainable method for PFAS removal from sewage. Aerated bioreactors’ foams are considered three-phase systems, comprising air, aqueous and solid components, the latter consisting of activated sludge biomass. To achieve a comprehensive understanding of the capability of aerated bioreactors’ foams to enrich PFAS, we analysed PFAS concentrations from WWTPs in both the solid and aqueous phases of the collapsed foams (foamate) and underlying bulk mixed liquors. Our findings show that PFAS enrichment occurs not only in the aqueous phase but also in the solid phase of the foamate. This suggests that previous field studies that only analysed the aqueous phase may have underestimated the capability of the aerated bioreactors’ foams to enrich PFAS. Fractions of PFOA and PFOS sorbed to the solid phase of the foamate can be as high as 60 % and 95 %, respectively. Our findings highlight the importance of implementing effective foamate management strategies that consider both the aqueous and solid phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.