Abstract
Solar eruptive events such as coronal mass ejections and eruptive flares are frequently associated with the emergence of magnetic flux from the convection zone into the corona. We use three-dimensional magnetohydrodynamic numerical simulations to study the interaction of coronal magnetic fields with emerging flux and determine the conditions that lead to eruptive activity. A simple parameter study is performed, varying the relative angle between emerging magnetic flux and a preexisting coronal dipole field. We find that in all cases the emergence results in a sheared magnetic arcade that transitions to a twisted coronal flux rope via low-lying magnetic reconnection. This structure, however, is constrained by its own outer field and so is noneruptive in the absence of reconnection with the overlying coronal field. The amount of this overlying reconnection is determined by the relative angle between the emerged and preexisting fields. The reconnection between emerging and preexisting fields is necessary to generate sufficient expansion of the emerging structure so that flare-like reconnection below the coronal flux rope becomes strong enough to trigger its release. Our results imply that the relative angle is the key parameter in determining whether the resultant active regions exhibit eruptive behavior and is thus a potentially useful candidate for predicting eruptions in newly emerging active regions. More generally, our results demonstrate that the detailed interaction between the convection zone/photosphere and the corona must be calculated self-consistently in order to model solar eruptions accurately.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have