Abstract
Brown adipocytes produce heat through non shivering thermogenesis (NST). To adapt to temperature cues, they possess a remarkably dynamic metabolism and undergo substantial cellular remodeling. The proteasome plays a central role in proteostasis and adaptive proteasome activity is required for sustained NST. Proteasome activators (PAs) are a class of proteasome regulators but the role of PAs in brown adipocytes is unknown. Here, we studied the roles of PA28α (encoded by Psme1) and PA200 (encoded by Psme4) in brown adipocyte differentiation and function. We measured gene expression in mouse brown adipose tissue. In cultured brown adipocytes, we silenced Psme1 and/or Psme4 expression through siRNA transfection. We then assessed impact on the ubiquitin proteasome system, brown adipocyte differentiation and function. We found that Psme1 and Psme4 are expressed in brown adipocytes in vivo and in vitro. Through silencing of Psme1 and/or Psme4 expression in cultured brown adipocytes, we found that loss of PAs did not impair proteasome assembly or activity, and that PAs were not required for proteostasis in this model. Loss of Psme1 and/or Psme4 did not impair brown adipocyte development or activation, suggesting that PAs are neither required for brown adipogenesis nor NST. In summary, we found no role for Psme1 and Psme4 in brown adipocyte proteostasis, differentiation, or function. These findings contribute to our basic understanding of proteasome biology and the roles of proteasome activators in brown adipocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.