Abstract
AbstractCu‐based catalysts have been identified as the most promising candidates for generation of C2+ products in electrochemical CO2 reduction reaction. Defect engineering in catalysts is a widely employed strategy for promoting C−C coupling on Cu. However, comprehensive understanding of defect structure‐to‐activity relationship has not been obtained. In this study, controllable defects generation is achieved, which leads to a series of Cu‐based catalysts with various phase mixing degrees. It is observed that the Faradaic efficiency toward C2+ products increases with the phase mixing degree, reaching 81 % at maximum. In situ infrared absorption spectroscopy reveals that the catalysts with higher phase mixing degree tend to form *CO more easily and possess higher retention of *CO under high overpotential window, thereby promoting C−C coupling. This work sheds new light on the relationship between defects and C−C coupling, and the rational developed of more advanced Cu‐base catalysts.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have