Abstract

To confront problems concerning large-scale integration of renewable energy sources, introduction of energy storage constantly gains ground. Benefits stemming from the adoption of energy storage include exploitation of otherwise rejected energy, increased reliability of energy supply and improved operation of a given power system overall. In this regard, contribution of such systems in achieving large-scale integration of wind energy into island grids is currently considered. More precisely, fuel cells and hydrogen storage (FC–HS) are investigated, in comparison with conventional batteries. For this purpose, a simulation algorithm is developed to study the energy performance of different FC–HS configurations used to recover wind energy curtailments. The developed algorithm is then applied to a representative Aegean island of medium–high quality wind potential. Results obtained indicate that FC–HS may become attractive in comparison with conventional batteries, only in the case that the use of hydrogen surplus to cover other energy flows is also put forward.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.