Abstract
Electronic transport in unintentionally doped GaxIn1-xN alloys with various Ga concentrations (x = 0.06, 0.32 and 0.52) is studied. Hall effect measurements are performed at temperatures between 77 and 300 K. Temperature dependence of carrier mobility is analysed by an analytical formula based on two-dimensional degenerate statistics by taking into account all major scattering mechanisms for a two-dimensional electron gas confined in a triangular quantum well between GaxIn1-xN epilayer and GaN buffer. Experimental results show that as the Ga concentration increases, mobility not only decreases drastically but also becomes less temperature dependent. Carrier density is almost temperature independent and tends to increase with increasing Ga concentration. The weak temperature dependence of the mobility may be attributed to screening of polar optical phonon scattering at high temperatures by the high free carrier concentration, which is at the order of 1014 cm−2. In our analytical model, the dislocation density is used as an adjustable parameter for the best fit to the experimental results. Our results reveal that in the samples with lower Ga compositions and carrier concentrations, alloy and interface roughness scattering are the dominant scattering mechanisms at low temperatures, while at high temperatures, optical phonon scattering is the dominant mechanism. In the samples with higher Ga compositions and carrier concentrations, however, dislocation scattering becomes more significant and suppresses the effect of longitudinal optical phonon scattering at high temperatures, leading to an almost temperature-independent behaviour.
Highlights
In the last decade, after the revision of the band gap energy from 1.9 to approximately 0.7 eV [1], intensive research has been carried out on InN and In-rich GaxIn1-xN alloys in order to re-determine the fundamental properties [2,3,4]
The samples are not intentionally doped, the Hall effect results show that all the samples have n-type conductivity, and the free carrier densities are independent of the temperature; samples can be regarded as metallic-like over the whole temperature range as commonly reported by us and by other research groups [7,8,24,25,26,27,28]
In the low-temperature region (≤100 K), the mobility is almost independent of temperature for all the samples
Summary
After the revision of the band gap energy from 1.9 to approximately 0.7 eV [1], intensive research has been carried out on InN and In-rich GaxIn1-xN alloys in order to re-determine the fundamental properties [2,3,4]. Despite much interest on the optical properties of InN and GaxIn1-xN [5,6], there has been a relatively small number of investigations to explain temperature-dependent electronic transport properties in GaxIn1-xN alloys [7,8]. We report the electronic transport properties of nominally undoped GaxIn1-xN alloys with different Ga concentrations (x = 0.06, 0.32 and 0.52). Hall effect results show that all the alloys are highly n-type,
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have