Abstract

Extreme weather events frequency and scale are altered due to climate change. Symbiosis between corals and their endosymbiotic-dinoflagellates (Symbiodinium) is susceptible to these events and can lead to what is known as bleaching. However, there is evidence for coral adaptive plasticity in the role of epigenetic that have acclimated to high-temperature environments. We have implemented ATAC-seq and RNA-seq to study the cnidarian-dinoflagellate model Exaptasia pallida (Aiptasia) and expose the role of chromatin-dynamics in response to thermal-stress. We have identified 1309 genomic sites that change their accessibility in response to thermal changes. Moreover, apo-symbiotic Aiptasia accessible sites were enriched with NFAT, ATF4, GATA3, SOX14, and PAX3 motifs and expressed genes related to immunological pathways. Symbiotic Aiptasia accessible sites were enriched with NKx3-1, HNF4A, IRF4 motifs and expressed genes related to oxidative-stress pathways. Our work opens a new path towards understanding thermal-stress gene regulation in association with gene activity and chromatin-dynamics.

Highlights

  • Extreme weather events frequency and scale are altered due to climate change

  • Apo-symbiotic Aiptasia accessible sites were enriched with NFAT, ATF4, GATA3, SOX14 and PAX3 motifs and expressed genes related to immunological pathways

  • The experimental design included a total of four groups, in which two were introduced to heat-stress and two to constant temperature conditions serving as the control, over a period of 28 days

Read more

Summary

Introduction

Extreme weather events frequency and scale are altered due to climate change. Symbiosis between corals and their endosymbiotic-dinoflagellates (Symbiodinium) is susceptible to these events and can lead to what is known as bleaching. Over the past several decades, reefs throughout the world have been affected by local anthropogenic stressors and climate change—as much as 75% of the world’s coral reefs are threatened and as many as 95% may be in danger of being lost by mid-century[5] This can be attributed to mass bleaching events that are tied to global warming[6,7], but local stressors associated with overharvesting and coastal development (urban and agricultural) are major contributors to this global decline[8]. Still a major knowledge gap remains, especially in histone modifications, and chromatin dynamics, regarding the regulatory and epigenetic mechanisms controlling these cellular and molecular pathways in corals[16,17], partially due to the fact that in corals DNA methylation levels correlate broadly and uniformly with expressed ‘housekeeping’ genes, whereas genes responsible for inducible or cell-specific functions are weakly methylated[18]. Identification of enriched motifs within these active CREs can, reveal genes associated with a transcriptional regulatory network[19]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.