Abstract

Abstract The influence of the opposite phases of ENSO on the frequency of extreme rainfall events over South America is analyzed for each month of the ENSO cycle on the basis of a large set of daily station rainfall data and compared with the influence of ENSO on the monthly total rainfall. The analysis is carried out with station data and their gridded version and the results are consistent. Extreme events are defined as 3-day mean precipitation above the 90th percentile. The mean frequencies of extreme events are determined for each month and for each category of year (El Niño, La Niña, and neutral), and the differences between El Niño and neutral years and La Niña and neutral years are computed. Changes in the mean intensity of extreme events are also investigated. Significant ENSO signals in the frequency of extreme events are found over extensive regions of South America during different periods of the ENSO cycle. Although ENSO-related changes in intensity show less significance and spatial coherence, there are some robust changes in several regions, especially in southeastern South America. The ENSO-related changes in the frequency of extreme rainfall events are generally coherent with changes in total monthly rainfall quantities. However, significant changes in extremes are much more extensive than the corresponding changes in monthly rainfall because the highest sensitivity to ENSO seems to be in the extreme range of daily precipitation. This is important, since the most dramatic consequences of climate variability result from changes in extreme events. The pattern of frequency changes produced by El Niño and La Niña episodes with respect to neutral years is roughly symmetric, but there are several examples of nonlinearity in the ENSO regional teleconnections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call