Abstract

Extreme flood events have been and continue to be one of the most important natural hazards responsible for deaths and economic losses. Extreme floods result in direct destructive effects during the time of the event, and they also may be followed by a related chain of indirect calamities such as famines and epidemics that produce additional damages and suffering. Extreme hydrological events that have occurred in the historical past may also occur in the future. Knowledge about magnitudes and recurrence frequencies of past extreme hydrological events in most regions are too short to adequately evaluate potential magnitudes and recurrence frequencies of extreme hydrological events. Stationary climate in which the mean and variance do not change over time is a basic underlying assumption of standard methodological procedures for estimating recurrence probabilities of extreme hydrological events. Palaeo-archives contained in river and lake sediments, fossil plant and animal matter, ice layers, and other natural archives show that the assumption of stationary climate is not valid when the time scale is extended beyond centuries and millennia. Records of past extreme floods that occurred long before the period of instrumentation can be reconstructed from the distribution of slackwater flood deposits or from derivation of water depths competent to transport the largest rocks found in flood deposited sediment. Palaeoflood records reconstructed from the Upper Mississippi and Lower Colorado River systems in the United States confirm nonstationary behaviour of the mean and variance in hydrological time series. These stratigraphic records have shown that even very modest climatic changes have resulted in very important changes in the magnitudes and recurrence frequencies of extreme floods. A close relationship was found between the palaeo-flood record of extreme floods in the Upper Mississippi River system and a palaeo-record of stable isotopes of oxygen and carbon preserved in speleothem calcite from a local cave. The relationship suggests that isotopic records elsewhere might be calibrated to provide insight about how future potential climate changes might impact extreme flood magnitudes and recurrence frequencies there. Atmospheric global circulation models (GCMs) mainly simulate average climatic conditions and are presently inadequate sources of information about how future climate changes might be represented at the extreme event scale. Palaeo-flood archives, however, provide basic information about how magnitudes and recurrence frequencies of extreme hydrological events responded to past climate changes and they also provide a reference base against which GCM simulations can be calibrated regionally and be better interpreted to decipher hydrological information at the extreme event scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call