Abstract
This study aims to gauge the reliability and validity of metrics and algorithms in evaluating the quality of machine translation in a literary context. Ten machine translated versions of a literary story, provided by four different MT engines over a period of three years, are compared applying two quantitative quality estimation scores (BLEU and a recently developed literariness algorithm). The comparative analysis provides an insight not only into the quality of stylistic and narratological features of machine translation, but also into more traditional quality criteria, such as accuracy and fluency. It is found that evaluations are not always in agreement and that they lack nuance. It is suggested that metrics and algorithms cover only parts of the notion of “quality”, and that a more fine-grained approach is needed if potential literary quality of machine translation is to be captured and possibly validated using those instruments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.