Abstract
Abstract This article intends to contribute to the current debate on the quality of neural machine translation (NMT) vs. (professional) human translation quality, where recently claims concerning (super)human performance of NMT systems have emerged. The article will critically analyse some current machine translation (MT) quality evaluation methodologies employed in studies claiming such performance of their MT systems. This analysis aims to identify areas where these methodologies are potentially biased in favour of MT and hence may overvalue MT performance while undervaluing human translation performance. Then, the article provides some Translation Studies informed suggestions for improving or debiasing these methodologies in order to arrive at a more balanced picture of MT vs. (professional) human translation quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.