Abstract

The form of seed plants is determined by the growth of a number of meristems including apical meristems, leaf meristems and cambium layers. We investigated five recessive mutant alleles of a gene REVOLUTA that is required to promote the growth of apical meristems and to limit cell division in leaves and stems of Arabidopsis thaliana. REVOLUTA maps to the bottom of the fifth chromosome. Apical meristems of both paraclades (axillary shoots) and flowers of revoluta mutants frequently fail to complete normal development and form incomplete or abortive structures. The primary shoot apical meristem sometimes also arrests development early. Leaves, stems and floral organs, in contrast, grow abnormally large. We show that in the leaf epidermis this extra growth is due to extra cell divisions in the leaf basal meristem. The extent of leaf growth is negatively correlated with the development of a paraclade in the leaf axil. The thickened stems contain extra cell layers, arranged in rings, indicating that they may result from a cambium-like meristem. These results suggest that the REVOLUTA gene has a role in regulating the relative growth of apical and non-apical meristems in Arabidopsis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.