Abstract
There are some simple facts which distinguish Lie-algebras over fields of prime characteristic from Lie-algebras over fields of characteristic zero. These are(1) The degrees of the absolutely irreducible representations of a Lie-algebra of prime characteristic are bounded whereas, according to a theorem of H. Weyl, the degrees of the absolutely irreducible representations of a semi-simple Lie-algebra over a field of characteristic zero can be arbitrarily high.(2) For each Lie-algebra of prime characteristic there are indecomposable representations which are not irreducible, whereas every indecomposable representation of a semi-simple Liealgebra over a field of characteristic zero is irreducible (cf.[4]).(3) The quotient ring of the embedding algebra of a Lie-algebra over a field of prime characteristic is a division algebra of finite dimension over its center, whereas this is not the case for characteristic zero. (cf.[4]).(4) There are faithful fully reducible representations of every Lie-algebra of prime characteristic, whereas for characteristic zero only ring sums of semi-simple Lie-algebras and abelian Lie-algebras admit faithful fully reducible representations (cf.[6], [2], [4]).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Glasgow Mathematical Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.