Abstract
We continue the algebraic study of almost inner derivations of Lie algebras over a field of characteristic zero and determine these derivations for free nilpotent Lie algebras, for almost abelian Lie algebras, for Lie algebras whose solvable radical is abelian and for several classes of filiform nilpotent Lie algebras. We find a family of [Formula: see text]-dimensional characteristically nilpotent filiform Lie algebras [Formula: see text], for all [Formula: see text], all of whose derivations are almost inner. Finally, we compare the almost inner derivations of Lie algebras considered over two different fields [Formula: see text] for a finite-dimensional field extension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.