Abstract
A material is cylindrically anisotropic when its elastic moduli referred to a cylindrical coordinate system are constants. Examples of cylindrically anisotropic materials are tree trunks, carbon fibers [1], certain steel bars, and manufactured composites [2]. Lekhnitskii [3] was the first one to observe that the stress at the axis of a circular rod of cylindrically monoclinic material can be infinite when the rod is subject to a uniform radial pressure (see also [4]). Ting [5] has shown that the stress at the axis of the circular rod can also be infinite under a torsion or a uniform extension. In this paper we first modify the Lekhnitskii formalism for a cylindrical coordinate system. We then consider a wedge of cylindrically monoclinic elastic material under anti-plane deformations. The stress singularity at the wedge apex depends on one material parameter γ. For a given wedge angle α, one can choose a γ so that the stress at the wedge apex is infinite. The wedge angle 2α can be any angle. It need not be larger than π, as is the case when the material is homogeneously isotropic or anisotropic. In the special case of a crack (2α=2π) there can be more than one stress singularity, some of them are stronger than the square root singularity. On the other hand, if γ < \( - \frac{1}{2}\) there is no stress singularity at the wedge apex for any wedge angle, including the special case of a crack. The classical paradox of Levy [6] and Carothers [7] for an isotropic elastic wedge also appears for a cylindrically anisotropic elastic wedge. There can be more than one critical wedge angle and, again, the critical wedge angle can be any angle.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have