Abstract
The classical solution for an isotropic elastic wedge loaded by uniform tractions on the sides of the wedge becomes infinite everywhere in the wedge when the wedge angle 2α equals π, 2π or 2α* where tan 2α* = 2α*. When the wedge is loaded by a concentrated couple at the wedge apex the solution also becomes infinite at 2α = 2α*. A similar situation occurs when the wedge is anisotropic except that 2α* is governed by a different equation and depends on material properties. Solutions which do not become infinite everywhere in the wedge are available for isotropic elastic wedges. In this paper we present solutions for the anisotropic elastic wedge at critical wedge angles. The main feature of the solutions obtained here is that they are in a real form even though Stroh's complex formalism is employed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.