Abstract

BackgroundNickel is considered an essential nutrient for certain microbial, plant, and animal species, but its role in human health remains controversial. Some studies have reported the relationship between nickel and type 2 diabetes mellitus (T2DM), but the results are not consistent and the mechanism is not clear, which needs further exploration. AimTo investigate the possible correlation between nickel and T2DM. MethodsWe conducted a case-control study of 192 patients with T2DM and 189 healthy controls at a hospital in central China. Plasma concentrations of nickel and six other trace elements were measured with inductively coupled plasma mass spectrometry. Logistic regression models, restricted cubic spline models (RCS), and Bayesian kernel machine regression (BKMR) were used to evaluate the relationship between plasma nickel and T2DM and its metabolic risk factors, as well as the presence or absence of interactions between nickel and other elements. ResultsThe T2DM group exhibited considerably lower plasma nickel levels than the control group (P < 0.001). Whether using a crude or adjusted model, logistic regression analysis finds a negative correlation between nickel levels and the risk of T2DM (P trend < 0.001). According to the RCS, the risk of T2DM reduces with rising nickel levels when the value is below 6.1 μg/L; nickel has a negative linear correlation with fasting plasma glucose (FPG), an inverse U-shaped connection with superoxide dismutase (SOD), and a positive linear correlation with malondialdehyde (MDA) (all P overall < 0.05). The plasma nickel concentration was positively correlated with zinc, vanadium, and chromium (r = 0.23, 0.11, and 0.19, respectively; all P < 0.05) and negatively correlated with copper (r = − 0.11, P < 0.05). In the BKMR model, interactions of nickel with zinc on T2DM and SOD, nickel with chromium on T2DM and homeostasis model assessment of β cell (HOMA-β), and nickel with copper on FPG, homeostasis model assessment of insulin (HOMA-IR), and MDA were observed. ConclusionNickel may have a dual effect on the risk of T2DM, with a protective range of less than 6.1 μg/L. Potential interactions between nickel, copper, zinc, and chromium existed in their associations with T2DM and its metabolic risk factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call