Abstract

ObjectiveThe epidemiological evidence of human exposure to organophosphorus pesticides (OPPs) with type 2 diabetes mellitus (T2DM) and prediabetes (PDM) is scarce. We aimed to examine the association of T2DM/PDM risk with single OPP exposure and multi-OPP co-exposure. MethodsPlasma levels of ten OPPs were measured using the gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) among 2734 subjects from the Henan Rural Cohort Study. We used generalized linear regression to estimate odds ratios (ORs) or β with 95% confidence intervals (CIs), and constructed quantile g-computation and Bayesian kernel machine regression (BKMR) models to investigate the association of OPPs mixture with the risk of T2DM and PDM. ResultsHigh detection rates ranged from 76.35% (isazophos) to 99.17% (malathion and methidathion) for all OPPs. Several plasma OPPs concentrations were in positive correlation with T2DM and PDM. Additionally, positive associations of several OPPs with fasting plasma glucose (FPG) values and glycosylated hemoglobin (HbA1c) levels were observed. In the quantile g-computation, we identified significantly positive associations between OPPs mixtures and T2DM as well as PDM, and fenthion had the greatest contribution for T2DM, followed by fenitrothion and cadusafos. As for PDM, the increased risk was largely explained by cadusafos, fenthion, and malathion. Furthermore, BKMR models suggested that co-exposure to OPPs was linked to an increased risk of T2DM and PDM. ConclusionOur findings suggested that the individual and mixture of OPPs exposure were associated with an increased risk of T2DM and PDM, implying that OPPs might act an important role in the development of T2DM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call