Abstract
This paper explores the modeling and simulation of an innovative double-damper suspension system, evaluating its effectiveness through different test scenarios. The double damper integrates two individual dampers into a unified assembly. The modeling process involves representing the damper as two distinct dampers and a body block, accounting for the additional degree of freedom introduced by combining the two dampers. Simulink/MATLAB is employed for modeling the pressure, discharge, and force equations of the damper. A simplified quarter-car model is designed to conduct simulations for different road profiles, evaluating the efficacy of this double-damper model. The reduced-order modeling approach, suitable for complex systems like dampers, is utilized. Dedicated mathematical models are utilized to examine both single- and double-damper configurations, with the resulting non-linear equations solved using Newton’s iterative method. The equations derived for the single damper provide the basis for modeling the double-damper system. In this model, two separate dampers, each possessing similar properties, are simulated and considered to be rigidly linked at their connection point. Consequently, it is assumed that a portion of the force and velocity experienced by the lower damper is transmitted to the upper damper, and vice versa. Simulation results demonstrate that the innovative double-damper design outperforms a single passive damper in attenuating the oscillations of both the sprung and unsprung masses. Moreover, this innovative concept offers increased adaptability to balance between ride comfort and road holding, a feature previously limited to passive suspension systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.