Abstract
Consider a random planar point process whose law is invariant under planar isometries. We think of the process as a random distribution of point charges and consider the electric field generated by the charge distribution. In Part I of this work, we found a condition on the spectral side which characterizes when the field itself is invariant with a well-defined second-order structure. Here, we fix a process with an invariant field, and study the fluctuations of the flux through large arcs and curves in the plane. Under suitable conditions on the process and on the curve, denoted Gamma , we show that the asymptotic variance of the flux through R,Gamma grows like R times the signed length of Gamma . As a corollary, we find that the charge fluctuations in a dilated Jordan domain is asymptotic with the perimeter, provided only that the boundary is rectifiable. The proof is based on the asymptotic analysis of a closely related quantity (the complex electric action of the field along a curve). A decisive role in the analysis is played by a signed version of the classical Ahlfors regularity condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.