Abstract
In this work, we examined the possibility of improving ion-exchange adsorbent performance by nanoscale structuring of ligands into clusters of fixed size rather than a random distribution of individual charges. The calcium-depleted form of the protein alpha-lactalbumin, which displays a cluster of acidic amino acid residues, showed enhanced adsorption affinity and capacity on clustered-charge pentalysinamide and pentaargininamide adsorbents as compared to single-charge lysinamide and argininamide adsorbents of matched total charge. Two differently charge-clustered mutants of rat microsomal cytochrome b(5), E11Q and E44Q, with the same total charge also were well differentiated by clustered-charge adsorbents. Thus, an organized rather than random distribution of charges may produce adsorbents with higher capacity and selectivity, especially for biomolecules with inherent charge clustering.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have