Abstract
In this series of experiments, evidence was found for a complex psychological representation of musical pitch. The results of a scaling study, in which subjects judged the similarities between pairs of tones presented in an explicitly tonal context, suggest that musical listeners extract a pattern of relationships among tones that is determined not only by pitch height and chroma, but also by membership in the major triad chord and the diatonic scale associated with the tonal system of the context. Multidimensional scaling of the similarity ratings gave a three-dimensional conical structure around which the tones were ordered according to pitch height. The major triad components formed a closely related cluster near the vertex of the cone; the remaining diatonic scale tones formed a less closely related subset farther from the vertex; and, the nondiatonic tones, still farther from the vertex, were widely dispersed. The results also suggest that, in the psychological representation, tones less closely related to the tonality are less stable than tones closely related to the tonality, and that the representation incorporates the tendency for unstable tones to move toward the more stable tones in time, reflecting the dynamic character of musical tones. In the similarity ratings of the scaling study, tones less related to the tonality were judged more similar to tones more related to the tonality than the reverse temporal order. Furthermore, in a delayed recognition task memory performance for nondiatonic tones was less accurate than for diatonic tones, and nondiatonic tones were more often confused with diatonic tones than diatonic tones were confused with nondiatonic tones. These results indicate the tonality-specific nature of the psychological representation and argue that the perception of music depends not only on psychoacoustic properties of the tones, but also on processes that relate the tones to one another through contact with a well-defined and complex psychological representation of musical pitch.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have