Abstract

Research on tonal priming has consistently shown that tonally expected events are processed more efficiently and has confirmed that the locus of the effect is cognitive rather than sensory. However, it is also important to investigate the role of pitch height, because models of tonal priming collapse across octaves, yet it is possible that pitch height may modulate the effectiveness of tonal priming. We systematically tested this issue by varying the pitch heights of a related (tonic) or a less-related (subdominant) target chord following a tonal context. Musically untrained participants (N = 30) made speeded consonant/dissonant judgments of the final chord of an eight-chord sequence. The effects of tonal priming emerged in accuracy and reaction time measures for all octaves, except for a ceiling effect on accuracy in the matching (original pitch height) condition. In a second experiment, we increased the shift to two octaves and compressed the chords to eliminate overlap between the target and context chords; again, tonal priming emerged. These findings have implications for the behavioral study of tonal priming and support the assumption of octave equivalence in computational models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.