Abstract

The structures and energies of formation and migration of the mono- and di-vacancy in Cu crystal have been described and calculated with modified analytical embedded atom method (MAEAM). The lattice relaxation is considered with molecular dynamics (MD) method at T=0 K. The results show the FN di-vacancy is the most stable and likely occurs in practice from the energy minimization. Compared with the mono-vacancy, the formation energy of the FN di-vacancy is higher than that of a mono-vacancy, but lower than that of two isolated mono-vacancy. The preferred migration mechanism of the FN di-vacancy is multi-jump of either vacancy (rotating the di-vacancy). The calculated migration energy of the FN di-vacancy is lower than that of a mono-vacancy, so the FN di-vacancy is easier to migrate. All of the calculated results are in good agreement with the experimental values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call