Abstract

BackgroundMalaria is an endemic disease affecting many countries in Tropical regions. In the search for compound hits for the design and/or development of new drugs against the disease, many research teams have resorted to African medicinal plants in order to identify lead compounds. Three-dimensional molecular models were generated for anti-malarial compounds of African origin (from 'weakly' active to 'highly' active), which were identified from literature sources. Selected computed molecular descriptors related to absorption, distribution, metabolism, excretion and toxicity (ADMET) of the phytochemicals have been analysed and compared with those of known drugs in order to access the 'drug-likeness' of these compounds.ResultsIn the present study, more than 500 anti-malarial compounds identified from 131 distinct medicinal plant species belonging to 44 plant families from the African flora have been considered. On the basis of Lipinski's 'Rule of Five', about 70% of the compounds were predicted to be orally bioavailable, while on the basis of Jorgensen's 'Rule of Three', a corresponding >80% were compliant. An overall drug-likeness parameter indicated that approximately 55% of the compounds could be potential leads for the development of drugs.ConclusionsFrom the above analyses, it could be estimated that >50% of the compounds exhibiting anti-plasmodial/anti-malarial activities, derived from the African flora, could be starting points for drug discovery against malaria. The 3D models of the compounds have been included as an accompanying file and could be employed in virtual screening.Electronic supplementary materialThe online version of this article (doi:10.1186/s13588-014-0006-x) contains supplementary material, which is available to authorized users.

Highlights

  • Malaria is an endemic disease affecting many countries in Tropical regions

  • We present a computer-based drug metabolism and pharmacokinetics (DMPK) analysis of >500 anti-malarial compounds, which have been previously isolated from the African flora

  • In this study, the calculated physicochemical properties and indicators of drug-likeness have been used in the assessment of the ADMET/DMPK profiles of >500 compounds isolated from medicinal plants in Africa, which have exhibited from weak to high in vitro and/or in vivo anti-plasmodial/anti-malarial activity

Read more

Summary

Introduction

Malaria is an endemic disease affecting many countries in Tropical regions. In the search for compound hits for the design and/or development of new drugs against the disease, many research teams have resorted to African medicinal plants in order to identify lead compounds. One of the current approaches for shortening the time required and cutting down the cost for the discovery of lead compounds which potentially inhibit or modulate known drug targets is to incorporate computer-based methods like docking techniques, pharmacophore-based searches and neural networking [9,10,11,12,13]. The absorption, distribution, metabolism, excretion and toxicity (ADMET) profile of a potential drug molecule should be known if it has to stand the chances of entering the market. Assessing such information for lead compounds early enough would help eliminate molecules with predicted uninteresting profiles and eventually cut down the price of drug discovery [8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call