Abstract

The phospholipid and fatty acid composition of primary cultures (24 h) of chick embryo skeletal muscle myoblasts treated for 4–24 h with physiological concentrations of 1,25-dihydroxyvitamin D-3 and 25-hydroxyvitamin D-3 were analyzed. 25-Hydroxyvitamin D-3 did not alter the relative amounts of individual muscle cell phospholipids whereas 1,25-dihydroxyvitamin D-3 significantly increased phosphatidylcholine content, mainly at the expense of a decrease in phosphatidylethanolamine concentration. The increase in phosphatidylcholine occurred at a faster rate during the first 8 h than in the subsequent 8–24 h treatment period. A similar time course in 1,25-dihydroxyvitamin D 3-dependent changes in myoblast calcium uptake has been observed. In addition, this metabolite markedly increased (100%) the arachidonate content of myoblast phosphatidylcholine near the fusion stage of the cells (24 h of treatment). The levels of docosahexaenoate, a minor polyunsaturated fatty acid, in phosphatidylcholine and phosphatidylethanolamine were also substantially elevated by 1,25-dihydroxyvitamin D-3. No significant changes in fatty acid composition in response to 25-hydroxyvitamin D-3 were observed. Modifications in phospholipids and polyunsaturated fatty acids may play a role in the effects of 1,25-dihydroxyvitamin D-3 on muscle cell calcium transport and differentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.