Abstract
BackgroundTo date, the microbiota of the human penis has been studied mostly in connection with circumcision, HIV risk and female partner bacterial vaginosis (BV). These studies have shown that male circumcision reduces penile anaerobic bacteria, that greater abundance of penile anaerobic bacteria is correlated with increased cytokine levels and greater risk of HIV infection, and that the penile microbiota is an important harbour for BV-associated bacteria. While circumcision has been shown to significantly reduce the risk of acquiring human papillomavirus (HPV) infection, the relationship of the penile microbiota with HPV is still unknown. In this study, we examined the penile microbiota of HPV-infected men as well as the impact of HIV status.ResultsThe penile skin microbiota of 238 men from Cape Town (South Africa) were profiled using Illumina sequencing of the V3-V4 hypervariable regions of the 16S rRNA gene. Corynebacterium and Prevotella were found to be the most abundant genera. Six distinct community state types (CSTs) were identified. CST-1, dominated by Corynebacterium, corresponded to less infections with high-risk HPV (HR-HPV) relative to CSTs 2–6. Men in CST-5 had greater relative abundances of Prevotella, Clostridiales, and Porphyromonas and a lower relative abundance of Corynebacterium. Moreover, they were significantly more likely to have HPV or HR-HPV infections than men in CST-1. Using a machine learning approach, we identified greater relative abundances of the anaerobic BV-associated bacteria (Prevotella, Peptinophilus, and Dialister) and lower relative abundance of Corynebacterium in HR-HPV-infected men compared to HR-HPV-uninfected men. No association was observed between HIV and CST, although the penile microbiota of HIV-infected men had greater relative abundances of Staphylococcus compared to HIV-uninfected men.ConclusionsWe found significant differences in the penile microbiota composition of men with and without HPV and HIV infections. HIV and HR-HPV infections were strongly associated with greater relative abundances of Staphylococcus and BV-associated bacterial taxa (notably Prevotella, Peptinophilus and Dialister), respectively. It is possible that these taxa could increase susceptibility to HIV and HR-HPV acquisition, in addition to creating conditions in which infections persist. Further longitudinal studies are required to establish causal relationships and to determine the extent of the effect.
Highlights
To date, the microbiota of the human penis has been studied mostly in connection with circumcision, Human immunodeficiency virus (HIV) risk and female partner bacterial vaginosis (BV)
HIV and HR-human papillomavirus (HPV) infections were strongly associated with greater relative abundances of Staphylococcus and BV-associated bacterial taxa, respectively
It is possible that these taxa could increase susceptibility to HIV and high-risk HPV (HR-HPV) acquisition, in addition to creating conditions in which infections persist
Summary
The microbiota of the human penis has been studied mostly in connection with circumcision, HIV risk and female partner bacterial vaginosis (BV). Several recent studies [15,16,17,18,19,20,21,22] have indicated that specific genital bacteria, which are more prevalent or abundant in uncircumcised men, could stimulate local immune responses that enhance epithelial inflammation and HIV target cell recruitment. This suggests that HIV acquisition could be linked to proinflammatory anaerobic bacteria in the penile bacterial microbiota
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have