Abstract
The effect of a free surface on the Peierls stress of a perfect dislocation, as well as on one of two dislocation partials under a free surface, has been accounted for by considering the Lubarda–Markenscoff variable-core dislocation model (VCM). The VCM dislocation smears the Burgers vector, while producing on the slip plane the Peierls–Nabarro sinusoidal relation between the stress and the slip discontinuity with a variable width. Here the core radius is allowed to depend on the distance to the free surface and the other partial. The Peierls stress is computed as a configurational force by accounting for all the energies and the image stresses to satisfy the traction-free boundary conditions. The results are applied to aluminum and copper and comparisons are made with atomistic calculations in the literature that show that the partials merge as they approach the free surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.