Abstract

The solution for a crystalline edge dislocation is presented within a framework of continuum linear elasticity, and is compared with the Peierls–Nabarro solution based on a semi-discrete method. The atomic disregistry and the shear stress across the glide plane are discussed. The Peach–Koehler configurational force is introduced as the gradient of the strain energy with respect to the dislocation position between its two consecutive equilibrium positions. The core radius is assumed to vary periodically between equilibrium positions of the dislocation. The critical force is expressed in terms of the core radii or the energies of the stable and unstable equilibrium configurations. This is used to estimate the Peierls stress for both wide and narrow dislocations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.