Abstract
Atherosclerosis is driven by an inflammatory process of the vascular wall. The novel orphan G-protein coupled receptor 5B of family C (GPRC5B) is involved in drosophila sugar and lipid metabolism as well as mice adipose tissue inflammation. Here, we investigated the role of GPRC5B in the pro-atherogenic mechanisms of hyperglycemia and vascular inflammation. Immortalized and primary endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) were used for stimulation with high glucose or different cytokines. Adenoviral- or plasmid-driven GPRC5B overexpression and siRNA-mediated knockdown were performed in these cells to analyze functional and mechanistic pathways of GPRC5B. In ECs and VSMCs, stimulation with high glucose, TNFα or LPS induced a significant upregulation of endogenous GPRC5B mRNA and protein levels. GPRC5B overexpression and knockdown increased and attenuated, respectively, the expression of the pro-inflammatory cytokines TNFα, IL-1β, IL-6 as well as the pro-atherogenic vascular adhesion molecules ICAM-1 and VCAM-1. Furthermore, the expression and activity of the metalloproteinase MMP-9, a component of atherosclerotic plaque stabilization, were significantly enhanced by GPRC5B overexpression. Mechanistically, GPRC5B increased the phosphorylation of ERK1/2 and activated NFκB through a direct interaction with the tyrosine kinase Fyn. Our findings demonstrate that GPRC5B is upregulated in response to high glucose and pro-inflammatory signaling. GPRC5B functionally modulates the inflammatory activity in cells of the vascular wall, suggesting a pro-atherogenic GPRC5B-dependent positive feedback loop via Fyn and NFκB. Thus, GPRC5B warrants further attention as a novel pharmacological target for the treatment of vascular inflammation and possibly atherogenesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have