Abstract

An adaptive moving mesh method is developed for the numerical solution of an enthalpy formulation of heat conduction problems with a phase change. The algorithm is based on a very simple mesh modification strategy that allows the smooth evolution of mesh nodes to track interfaces. At each time step the nonlinear enthalpy equation is solved using a novel semi-implicit moving mesh discretisation which is shown to possess a unique solution. Numerical examples are given for a two-phase freezing problem, a model of a spot-welding process, and a three-phase problem with a varying number of interfaces. These test cases demonstrate the accuracy and effectiveness of the overall strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.