Abstract

This paper presents the first state-of-the-art review on simultaneous vibration control and energy harvesting strategy, a multi-disciplinary topic related to structural dynamics, mechanical design, and power electronics. The prominent damping effects provided by large-scale vibration-based energy harvesters make the simultaneous control of vibration sources possible. Although the concept of energy-regenerative shock absorbers with vibration control and energy harvesting functions dates back to the 1970s in automotive engineering, the development of such dual-function devices was not extended to broad applications in civil and mechanical structures until 2010. We have witnessed rapid advances in this field in the past decade. A series of feasibility studies, configuration designs, numerical simulations, laboratory experiments, and field tests have demonstrated, to some extent, the great prospect of these dual-function devices in various potential applications. This review first presents different energy transducers and vibration energy sources briefly. Subsequently, different designs and target applications of dual-function devices are elaborated. The power performance in large-scale implementation of dual-function devices is predicted on the order of kilowatt level, which is considerably higher than that of most regular vibration-based energy harvesters and sufficient to power structural health monitoring systems or semi-active/active control systems. The current challenges and potential future research directions of energy-harvesting vibration control are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call