Abstract
We have newly interpreted the Newtonian gravitational constant G as the gravitational inertia of vacuum G0. The source mass inserted into vacuum decreases this value G0 to GZ on the dependence of the atomic number Z of atoms in the source mass. This is the mechanism for the attraction of test masses through vacuum – the test mass follows the decrease of the gravitational inertia of vacuum towards the source mass. We have extracted the relationship GZ = G0 (1 – k Z) where k is the experimental constant from ten actual precise experimental determinations of GZ. This model was tested on two precise experimental values of GZ determined for GEARTH, and GBRASS. This model enables to predict values GZ for atoms, molecules and compositions of the studied source masses and to realize experimental verification with the existing experimental technology. The experimental GZ values are thus arranged into a system and the spread in these data is explained as the influence of atoms of the source masses on their surrounding via the decrease of the gravitational inertia of vacuum. We might achieve the accuracy of experimental values GZ with six significant figures for all configurations of source and test masses.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have