Abstract
Gravity is the weakest fundamental interaction and the only one that has not been measured at the particle level. Traditional experimental methods, from astronomical observations to torsion balances, use macroscopic masses to both source and probe gravitational fields. Matter wave interferometers have used neutrons, atoms and molecular clusters as microscopic test particles, but initially probed the field sourced by the entire earth. Later, the gravitational field arising from hundreds of kilograms of artificial source masses was measured with atom interferometry. Miniaturizing the source mass and moving it into the vacuum chamber could improve positioning accuracy, allow the use of monocrystalline source masses for improved gravitational measurements, and test new physics, such as beyond-standard-model ("fifth") forces of nature and non-classical effects of gravity. In this work, we detect the gravitational force between freely falling cesium atoms and an in-vacuum, centimeter-sized source mass using atom interferometry with state-of-the-art sensitivity. The ability to sense gravitational-strength coupling is conjectured to access a natural lower bound for fundamental forces, thereby representing an important milestone in searches for physics beyond the standard model. A local, in-vacuum source mass is particularly sensitive to a wide class of interactions whose effects would otherwise be suppressed beyond detectability in regions of high matter density. For example, our measurement strengthens limits on a number of cosmologically-motivated scalar field models, such as chameleon and symmetron fields, by over two orders of magnitude and paves the way toward novel measurements of Newton's gravitational constant G and the gravitational Aharonov-Bohm effect
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.